

Question		Answer	Marks	Guidance	
4	(ii)	$\begin{aligned} & {[\mathrm{g}(-2)=]-8-2+10} \\ & \text { or } \mathrm{f}(-2)=16+8+4-18-10 \end{aligned}$	M1	[in this scheme $\mathrm{g}(x)=x^{3}+x+10$] allow M1 for correct trials with at least two values of x (other than 1) using $\mathrm{g}(x)$ or $\mathrm{f}(x)$ or $x^{3}-3 x^{2}+7 x-5$ (may allow similar correct trials using division or inspection)	$\begin{aligned} & \text { eg } \mathrm{f}(2)=16-8+4+18-10 \text { or } 20 \\ & \mathrm{f}(3)=81-27+9+27-10 \text { or } 80 \\ & \mathrm{f}(0)=-10 \\ & \mathrm{f}(-1)=1+1+1-9-10 \text { or }-16 \end{aligned}$ No ft from wrong cubic 'factors' from (i)
		$x=-2$ isw	A1	allow these marks if already earned in (i)	NB factorising of $x^{3}+x+10$ or $x^{3}-3 x^{2}+7 x-5$ in (ii) earns credit for (iii) [annotate with a yellow line in both parts to alert you - the image zone for (iii) includes part (ii)]
			[2]		

Question		Answer	Marks	Guidance	
4	(iii)	attempted division of $x^{3}+x+10$ by $(x+2)$ as far as $x^{3}+2 x^{2}$ in working	M1	or $x^{3}-3 x^{2}+7 x-5$ by $(x-1)$ as far as $x^{3}-x^{2}$ in working or inspection with at least two terms of quadratic factor correct	alt method: allow M1 for attempted division of quartic by $x^{2}+x-2$ as far as $x^{4}+x^{3}-2 x^{2}$ in working, or inspection etc
		correctly obtaining $x^{2}-2 x+5$	A1	allow these first 2 marks if this has been done in (ii), even if not used here	
		use of $b^{2}-4 a c$ with $x^{2}-2 x+5$	M1	may be in attempt at formula (ignore rest of formula)	or completing square form attempted or attempt at calculus or symmetry to find min pt
					NB M0 for use of $b^{2}-4 a c$ with cubic factor etc
		$b^{2}-4 a c=4-20[=-16]$	A1	may be in formula;	or $(x-1)^{2}+4$ or $\min =(1,4)$
		so only two real roots[of $\mathrm{f}(x)]$ [and hence no more linear factors]	A1	or no real roots of $x^{2}-2 x+5=0$; allow this last mark if clear use of $x^{2}-2 x+5$ $=0$, even if error in $b^{2}-4 a c$, provided result negative, but no ft from wrong factor	or $(x-1)^{2}+4$ is always positive so no real roots [of $(x-1)^{2}+4=0$] [and hence no linear factors] or similar conclusion from min pt
			[5]	if last M1 not earned, allow SC1 for stating that the only factors of 5 are 1 and 5 and reasoning eg that $(x-1)(x-5)$ and $(x+1)(x+5)$ do not give $x^{2}-2 x+5$ [hence $x^{2}-2 x+5$ does not factorise]	

8	$\frac{9 y^{10}}{2 x^{2}}$ oe as final answer	$\mathbf{3}$	$\mathbf{1}$ for each 'term'; 27/6 gets 0 for first term if $\mathbf{0}$, allow $\mathbf{B 1}$ for $\left(3 x y^{4}\right)^{3}=27 x^{3} y^{12}$	allow eg $4.5 x^{-2} y^{10}$

9	attempt at $\mathrm{f}(-3)$ $-27+18-15+k=6$ $k=30$	M1 A1	or M1 for long division by $(x+3)$ as far as obtaining $x^{2}-x$ and A1 for obtaining remainder as $k-24$ (but see below)
A1	equating coefficients method: M2 for $(x+3)\left(x^{2}-x+8\right)[+6]$ o.e. (from inspection or division) eg M2 for obtaining $x^{2}-x+8$ as quotient in division		

10	10 www	3	M1 for $f(3)=1$ soi and A1 for $31-3 k=1$ or 27 $-3 k=-3$ o.e. [a correct 3-term or 2-term equation]		
long division used:					
M1 for reaching $(9-k) x+4$ in working					
and A1 for 4 $+3(9-k)=1$ o.e.					
equating coeffts method:					
M2 for $(x-3)\left(x^{2}+3 x-1\right)$ [+1$]$ o.e.					
(from inspection or division $)$				$\quad 3$	
:---					

11	$a=-5$ www	3	M1 for $\mathrm{f}(2)=0$ used and M1 for $10+$ $2 a=0$ or better long division used: M1 for reaching $(8+a) x-6$ in working and M1 for $8+a=3$ equating coeffts method: M2 for obtaining $x^{3}+2 x^{2}+4 x+3$ as other factor	3

$\left.\begin{array}{|l|l|l|l|l|}\hline 12 & \mathrm{f}(2) \text { used } & \text { M1 } & \begin{array}{l}\text { or division by } x-2 \text { as far as } x^{2}+2 x \\ \text { obtained correctly } \\ \text { or remainder } 3=2(4+k)+7 \text { o.e. } 2 \text { nd } \\ 2^{3}+2 k+7=3 \\ k=-6\end{array} & \text { A1 }\end{array} \quad \begin{array}{l}\text { M1 dep on first }\end{array}\right\}$

